The cluster assessment of facial attractiveness using fuzzy neural network classifier based on 3D Moiré features
نویسندگان
چکیده
Facial attractiveness has long been argued upon varied emphases by philosophers, artists, psychologists and biologists. A number of studies empirically investigated how facial attractiveness was influenced by 2D facial characteristics, such as symmetry, averageness and golden ratio. However, few implementations of facial beauty assessment were based on 3D facial features. The purpose of this paper is to propose a novel cluster assessment system for facial attractiveness that is characterized by the incorporation of 3D geometric Moiré features with an adjusted fuzzy neural network (FNN). We first extract 3D facial features from images acquired by a 3dMD scanner. Seven Moiré features are employed to represent a 3D facial image. The FNN classifier, taking the Moiré features as the parameters, is then trained and validated against independently conducted attractiveness ratings. A number of diverse referees were invited and offered their attractiveness ratings over a five-item Likert scale for 100 female facial images. The proposed assessment presents a high accuracy rate of 90%, and the area under curve (AUC) computed from the receiver operating characteristic (ROC) curve is 0.95. The results show that the perceptions of facial attractiveness are essentially consensus among raters, and can be mathematically modeled through supervised learning techniques. The high accuracy achieved proves that the proposed FNN classifier can serve as a general, automated and human-like judgment tool for objective classification of female facial attractiveness, and thus has potential applications to the entertainment industry, cosmetic industry, virtual media, and plastic surgery. & 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملA NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR
The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...
متن کاملEffective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks
Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...
متن کاملRecognition of Multiple PQ Issues using Modified EMD and Neural Network Classifier
This paper presents a new framework based on modified EMD method for detection of single and multiple PQ issues. In modified EMD, DWT precedes traditional EMD process. This scheme makes EMD better by eliminating the mode mixing problem. This is a two step algorithm; in the first step, input PQ signal is decomposed in low and high frequency components using DWT. In the second stage, the low freq...
متن کاملImpact of Structural Components of Market on the Markup Level Based on Radial Basis Neural Network and Fuzzy Logic
This paper aims to evaluate the impact of several indices of market structure including entry to barrier, economies of scale and concentration degree on 140 active industries using the digit. Accordingly, we apply three methods including cost disadvantages ratio ( ), Herfindahl–Hirschman concentration index ( ) and Comanor and Willson criterion in order to assess the economies of scale and usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 47 شماره
صفحات -
تاریخ انتشار 2014